Input Output Kernel Regression: Supervised and Semi-Supervised Structured Output Prediction with Operator-Valued Kernels

نویسندگان

  • Céline Brouard
  • Marie Szafranski
  • Florence d'Alché-Buc
چکیده

In this paper, we introduce a novel approach, called Input Output Kernel Regression (IOKR), for learning mappings between structured inputs and structured outputs. The approach belongs to the family of Output Kernel Regression methods devoted to regression in feature space endowed with some output kernel. In order to take into account structure in input data and benefit from kernels in the input space as well, we use the Reproducing Kernel Hilbert Space theory for vector-valued functions. We first recall the ridge solution for supervised learning and then study the regularized hinge loss-based solution used in Maximum Margin Regression. Both models are also developed in the context of semi-supervised setting. In addition we derive an extension of Generalized Cross Validation for model selection in the case of the least-square model. Finally we show the versatility of the IOKR framework on two different problems: link prediction seen as a structured output problem and multi-task regression seen as a multiple and interdependent output problem. Eventually, we present a set of detailed numerical results that shows the relevance of the method on these two tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning of Protein Interactions in Fungal Secretory Pathways

In this paper we apply machine learning methods for predicting protein interactions in fungal secretion pathways. We assume an inter-species transfer setting, where training data is obtained from a single species and the objective is to predict protein interactions in other, related species. In our methodology, we combine several state of the art machine learning approaches, namely, multiple ke...

متن کامل

Semi-supervised Penalized Output Kernel Regression for Link Prediction

Link prediction is addressed as an output kernel learning task through semi-supervised Output Kernel Regression. Working in the framework of RKHS theory with vectorvalued functions, we establish a new representer theorem devoted to semi-supervised least square regression. We then apply it to get a new model (POKR: Penalized Output Kernel Regression) and show its relevance using numerical experi...

متن کامل

Stability of Multi-Task Kernel Regression Algorithms

We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning problems with nonscalar outputs like multi-task learning and structured output prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-d...

متن کامل

A Generalized Kernel Approach to Structured Output Learning

We study the problem of structured output learning from a regression perspective. We first provide a general formulation of the kernel dependency estimation (KDE) approach to this problem using operator-valued kernels. Our formulation overcomes the two main limitations of the original KDE approach, namely the decoupling between outputs in the image space and the inability to use a joint feature...

متن کامل

A unifying framework for vector-valued manifold regularization and multi-view learning

This paper presents a general vector-valued reproducing kernel Hilbert spaces (RKHS) formulation for the problem of learning an unknown functional dependency between a structured input space and a structured output space, in the Semi-Supervised Learning setting. Our formulation includes as special cases Vector-valued Manifold Regularization and Multi-view Learning, thus provides in particular a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016